Metamath Proof Explorer


Definition df-cau

Description: Define the set of Cauchy sequences on a given extended metric space. (Contributed by NM, 8-Sep-2006)

Ref Expression
Assertion df-cau Cau = d ran ∞Met f dom dom d 𝑝𝑚 | x + j f j : j f j ball d x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccau class Cau
1 vd setvar d
2 cxmet class ∞Met
3 2 crn class ran ∞Met
4 3 cuni class ran ∞Met
5 vf setvar f
6 1 cv setvar d
7 6 cdm class dom d
8 7 cdm class dom dom d
9 cpm class 𝑝𝑚
10 cc class
11 8 10 9 co class dom dom d 𝑝𝑚
12 vx setvar x
13 crp class +
14 vj setvar j
15 cz class
16 5 cv setvar f
17 cuz class
18 14 cv setvar j
19 18 17 cfv class j
20 16 19 cres class f j
21 18 16 cfv class f j
22 cbl class ball
23 6 22 cfv class ball d
24 12 cv setvar x
25 21 24 23 co class f j ball d x
26 19 25 20 wf wff f j : j f j ball d x
27 26 14 15 wrex wff j f j : j f j ball d x
28 27 12 13 wral wff x + j f j : j f j ball d x
29 28 5 11 crab class f dom dom d 𝑝𝑚 | x + j f j : j f j ball d x
30 1 4 29 cmpt class d ran ∞Met f dom dom d 𝑝𝑚 | x + j f j : j f j ball d x
31 0 30 wceq wff Cau = d ran ∞Met f dom dom d 𝑝𝑚 | x + j f j : j f j ball d x