Metamath Proof Explorer


Definition df-cbn

Description: Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006) Use df-bn instead. (New usage is discouraged.)

Ref Expression
Assertion df-cbn CBan = u NrmCVec | IndMet u CMet BaseSet u

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccbn class CBan
1 vu setvar u
2 cnv class NrmCVec
3 cims class IndMet
4 1 cv setvar u
5 4 3 cfv class IndMet u
6 ccmet class CMet
7 cba class BaseSet
8 4 7 cfv class BaseSet u
9 8 6 cfv class CMet BaseSet u
10 5 9 wcel wff IndMet u CMet BaseSet u
11 10 1 2 crab class u NrmCVec | IndMet u CMet BaseSet u
12 0 11 wceq wff CBan = u NrmCVec | IndMet u CMet BaseSet u