Metamath Proof Explorer


Definition df-cgra

Description: Define the congruence relation between angles. As for triangles we use "words of points". See iscgra for a more human readable version. (Contributed by Thierry Arnoux, 30-Jul-2020)

Ref Expression
Assertion df-cgra 𝒢 = g V a b | [˙Base g / p]˙ [˙ hl 𝒢 g / k]˙ a p 0 ..^ 3 b p 0 ..^ 3 x p y p a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccgra class 𝒢
1 vg setvar g
2 cvv class V
3 va setvar a
4 vb setvar b
5 cbs class Base
6 1 cv setvar g
7 6 5 cfv class Base g
8 vp setvar p
9 chlg class hl 𝒢
10 6 9 cfv class hl 𝒢 g
11 vk setvar k
12 3 cv setvar a
13 8 cv setvar p
14 cmap class 𝑚
15 cc0 class 0
16 cfzo class ..^
17 c3 class 3
18 15 17 16 co class 0 ..^ 3
19 13 18 14 co class p 0 ..^ 3
20 12 19 wcel wff a p 0 ..^ 3
21 4 cv setvar b
22 21 19 wcel wff b p 0 ..^ 3
23 20 22 wa wff a p 0 ..^ 3 b p 0 ..^ 3
24 vx setvar x
25 vy setvar y
26 ccgrg class 𝒢
27 6 26 cfv class 𝒢 g
28 24 cv setvar x
29 c1 class 1
30 29 21 cfv class b 1
31 25 cv setvar y
32 28 30 31 cs3 class ⟨“ x b 1 y ”⟩
33 12 32 27 wbr wff a 𝒢 g ⟨“ x b 1 y ”⟩
34 11 cv setvar k
35 30 34 cfv class k b 1
36 15 21 cfv class b 0
37 28 36 35 wbr wff x k b 1 b 0
38 c2 class 2
39 38 21 cfv class b 2
40 31 39 35 wbr wff y k b 1 b 2
41 33 37 40 w3a wff a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2
42 41 25 13 wrex wff y p a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2
43 42 24 13 wrex wff x p y p a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2
44 23 43 wa wff a p 0 ..^ 3 b p 0 ..^ 3 x p y p a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2
45 44 11 10 wsbc wff [˙ hl 𝒢 g / k]˙ a p 0 ..^ 3 b p 0 ..^ 3 x p y p a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2
46 45 8 7 wsbc wff [˙Base g / p]˙ [˙ hl 𝒢 g / k]˙ a p 0 ..^ 3 b p 0 ..^ 3 x p y p a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2
47 46 3 4 copab class a b | [˙Base g / p]˙ [˙ hl 𝒢 g / k]˙ a p 0 ..^ 3 b p 0 ..^ 3 x p y p a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2
48 1 2 47 cmpt class g V a b | [˙Base g / p]˙ [˙ hl 𝒢 g / k]˙ a p 0 ..^ 3 b p 0 ..^ 3 x p y p a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2
49 0 48 wceq wff 𝒢 = g V a b | [˙Base g / p]˙ [˙ hl 𝒢 g / k]˙ a p 0 ..^ 3 b p 0 ..^ 3 x p y p a 𝒢 g ⟨“ x b 1 y ”⟩ x k b 1 b 0 y k b 1 b 2