Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic number theory
Number-theoretical functions
df-chp
Metamath Proof Explorer
Description: Define the second Chebyshev function, which adds up the logarithms of
the primes corresponding to the prime powers less than x , see
definition in ApostolNT p. 75. (Contributed by Mario Carneiro , 7-Apr-2016)
Ref
Expression
Assertion
df-chp
⊢ ψ = x ∈ ℝ ⟼ ∑ n = 1 x Λ ⁡ n
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cchp
class ψ
1
vx
setvar x
2
cr
class ℝ
3
vn
setvar n
4
c1
class 1
5
cfz
class …
6
cfl
class .
7
1
cv
setvar x
8
7 6
cfv
class x
9
4 8 5
co
class 1 … x
10
cvma
class Λ
11
3
cv
setvar n
12
11 10
cfv
class Λ ⁡ n
13
9 12 3
csu
class ∑ n = 1 x Λ ⁡ n
14
1 2 13
cmpt
class x ∈ ℝ ⟼ ∑ n = 1 x Λ ⁡ n
15
0 14
wceq
wff ψ = x ∈ ℝ ⟼ ∑ n = 1 x Λ ⁡ n