Metamath Proof Explorer


Definition df-clat

Description: Define the class of all complete lattices, where every subset of the base set has an LUB and a GLB. (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)

Ref Expression
Assertion df-clat CLat = p Poset | dom lub p = 𝒫 Base p dom glb p = 𝒫 Base p

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccla class CLat
1 vp setvar p
2 cpo class Poset
3 club class lub
4 1 cv setvar p
5 4 3 cfv class lub p
6 5 cdm class dom lub p
7 cbs class Base
8 4 7 cfv class Base p
9 8 cpw class 𝒫 Base p
10 6 9 wceq wff dom lub p = 𝒫 Base p
11 cglb class glb
12 4 11 cfv class glb p
13 12 cdm class dom glb p
14 13 9 wceq wff dom glb p = 𝒫 Base p
15 10 14 wa wff dom lub p = 𝒫 Base p dom glb p = 𝒫 Base p
16 15 1 2 crab class p Poset | dom lub p = 𝒫 Base p dom glb p = 𝒫 Base p
17 0 16 wceq wff CLat = p Poset | dom lub p = 𝒫 Base p dom glb p = 𝒫 Base p