Metamath Proof Explorer


Definition df-clim

Description: Define the limit relation for complex number sequences. See clim for its relational expression. (Contributed by NM, 28-Aug-2005)

Ref Expression
Assertion df-clim = f y | y x + j k j f k f k y < x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cli class
1 vf setvar f
2 vy setvar y
3 2 cv setvar y
4 cc class
5 3 4 wcel wff y
6 vx setvar x
7 crp class +
8 vj setvar j
9 cz class
10 vk setvar k
11 cuz class
12 8 cv setvar j
13 12 11 cfv class j
14 1 cv setvar f
15 10 cv setvar k
16 15 14 cfv class f k
17 16 4 wcel wff f k
18 cabs class abs
19 cmin class
20 16 3 19 co class f k y
21 20 18 cfv class f k y
22 clt class <
23 6 cv setvar x
24 21 23 22 wbr wff f k y < x
25 17 24 wa wff f k f k y < x
26 25 10 13 wral wff k j f k f k y < x
27 26 8 9 wrex wff j k j f k f k y < x
28 27 6 7 wral wff x + j k j f k f k y < x
29 5 28 wa wff y x + j k j f k f k y < x
30 29 1 2 copab class f y | y x + j k j f k f k y < x
31 0 30 wceq wff = f y | y x + j k j f k f k y < x