Metamath Proof Explorer


Definition df-cmtN

Description: Define the commutes relation for orthoposets. Definition of commutes in Kalmbach p. 20. (Contributed by NM, 6-Nov-2011)

Ref Expression
Assertion df-cmtN cm = p V x y | x Base p y Base p x = x meet p y join p x meet p oc p y

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccmtN class cm
1 vp setvar p
2 cvv class V
3 vx setvar x
4 vy setvar y
5 3 cv setvar x
6 cbs class Base
7 1 cv setvar p
8 7 6 cfv class Base p
9 5 8 wcel wff x Base p
10 4 cv setvar y
11 10 8 wcel wff y Base p
12 cmee class meet
13 7 12 cfv class meet p
14 5 10 13 co class x meet p y
15 cjn class join
16 7 15 cfv class join p
17 coc class oc
18 7 17 cfv class oc p
19 10 18 cfv class oc p y
20 5 19 13 co class x meet p oc p y
21 14 20 16 co class x meet p y join p x meet p oc p y
22 5 21 wceq wff x = x meet p y join p x meet p oc p y
23 9 11 22 w3a wff x Base p y Base p x = x meet p y join p x meet p oc p y
24 23 3 4 copab class x y | x Base p y Base p x = x meet p y join p x meet p oc p y
25 1 2 24 cmpt class p V x y | x Base p y Base p x = x meet p y join p x meet p oc p y
26 0 25 wceq wff cm = p V x y | x Base p y Base p x = x meet p y join p x meet p oc p y