Database
BASIC TOPOLOGY
Topology
Limits and continuity in topological spaces
df-cn
Metamath Proof Explorer
Definition df-cn
Description: Define a function on two topologies whose value is the set of continuous
mappings from the first topology to the second. Based on definition of
continuous function in Munkres p. 102. See iscn for the predicate
form. (Contributed by NM , 17-Oct-2006)
Ref
Expression
Assertion
df-cn
⊢ Cn = j ∈ Top , k ∈ Top ⟼ f ∈ ⋃ k ⋃ j | ∀ y ∈ k f -1 y ∈ j
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
ccn
class Cn
1
vj
setvar j
2
ctop
class Top
3
vk
setvar k
4
vf
setvar f
5
3
cv
setvar k
6
5
cuni
class ⋃ k
7
cmap
class ↑ 𝑚
8
1
cv
setvar j
9
8
cuni
class ⋃ j
10
6 9 7
co
class ⋃ k ⋃ j
11
vy
setvar y
12
4
cv
setvar f
13
12
ccnv
class f -1
14
11
cv
setvar y
15
13 14
cima
class f -1 y
16
15 8
wcel
wff f -1 y ∈ j
17
16 11 5
wral
wff ∀ y ∈ k f -1 y ∈ j
18
17 4 10
crab
class f ∈ ⋃ k ⋃ j | ∀ y ∈ k f -1 y ∈ j
19
1 3 2 2 18
cmpo
class j ∈ Top , k ∈ Top ⟼ f ∈ ⋃ k ⋃ j | ∀ y ∈ k f -1 y ∈ j
20
0 19
wceq
wff Cn = j ∈ Top , k ∈ Top ⟼ f ∈ ⋃ k ⋃ j | ∀ y ∈ k f -1 y ∈ j