Metamath Proof Explorer


Definition df-cncf

Description: Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007)

Ref Expression
Assertion df-cncf cn = a 𝒫 , b 𝒫 f b a | x a e + d + y a x y < d f x f y < e

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccncf class cn
1 va setvar a
2 cc class
3 2 cpw class 𝒫
4 vb setvar b
5 vf setvar f
6 4 cv setvar b
7 cmap class 𝑚
8 1 cv setvar a
9 6 8 7 co class b a
10 vx setvar x
11 ve setvar e
12 crp class +
13 vd setvar d
14 vy setvar y
15 cabs class abs
16 10 cv setvar x
17 cmin class
18 14 cv setvar y
19 16 18 17 co class x y
20 19 15 cfv class x y
21 clt class <
22 13 cv setvar d
23 20 22 21 wbr wff x y < d
24 5 cv setvar f
25 16 24 cfv class f x
26 18 24 cfv class f y
27 25 26 17 co class f x f y
28 27 15 cfv class f x f y
29 11 cv setvar e
30 28 29 21 wbr wff f x f y < e
31 23 30 wi wff x y < d f x f y < e
32 31 14 8 wral wff y a x y < d f x f y < e
33 32 13 12 wrex wff d + y a x y < d f x f y < e
34 33 11 12 wral wff e + d + y a x y < d f x f y < e
35 34 10 8 wral wff x a e + d + y a x y < d f x f y < e
36 35 5 9 crab class f b a | x a e + d + y a x y < d f x f y < e
37 1 4 3 3 36 cmpo class a 𝒫 , b 𝒫 f b a | x a e + d + y a x y < d f x f y < e
38 0 37 wceq wff cn = a 𝒫 , b 𝒫 f b a | x a e + d + y a x y < d f x f y < e