Metamath Proof Explorer


Definition df-cnext

Description: Define the continuous extension of a given function. (Contributed by Thierry Arnoux, 1-Dec-2017)

Ref Expression
Assertion df-cnext CnExt = j Top , k Top f k 𝑝𝑚 j x cls j dom f x × k fLimf nei j x 𝑡 dom f f

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnext class CnExt
1 vj setvar j
2 ctop class Top
3 vk setvar k
4 vf setvar f
5 3 cv setvar k
6 5 cuni class k
7 cpm class 𝑝𝑚
8 1 cv setvar j
9 8 cuni class j
10 6 9 7 co class k 𝑝𝑚 j
11 vx setvar x
12 ccl class cls
13 8 12 cfv class cls j
14 4 cv setvar f
15 14 cdm class dom f
16 15 13 cfv class cls j dom f
17 11 cv setvar x
18 17 csn class x
19 cflf class fLimf
20 cnei class nei
21 8 20 cfv class nei j
22 18 21 cfv class nei j x
23 crest class 𝑡
24 22 15 23 co class nei j x 𝑡 dom f
25 5 24 19 co class k fLimf nei j x 𝑡 dom f
26 14 25 cfv class k fLimf nei j x 𝑡 dom f f
27 18 26 cxp class x × k fLimf nei j x 𝑡 dom f f
28 11 16 27 ciun class x cls j dom f x × k fLimf nei j x 𝑡 dom f f
29 4 10 28 cmpt class f k 𝑝𝑚 j x cls j dom f x × k fLimf nei j x 𝑡 dom f f
30 1 3 2 2 29 cmpo class j Top , k Top f k 𝑝𝑚 j x cls j dom f x × k fLimf nei j x 𝑡 dom f f
31 0 30 wceq wff CnExt = j Top , k Top f k 𝑝𝑚 j x cls j dom f x × k fLimf nei j x 𝑡 dom f f