Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.
The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cnfld |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccnfld | ||
1 | cbs | ||
2 | cnx | ||
3 | 2 1 | cfv | |
4 | cc | ||
5 | 3 4 | cop | |
6 | cplusg | ||
7 | 2 6 | cfv | |
8 | caddc | ||
9 | 7 8 | cop | |
10 | cmulr | ||
11 | 2 10 | cfv | |
12 | cmul | ||
13 | 11 12 | cop | |
14 | 5 9 13 | ctp | |
15 | cstv | ||
16 | 2 15 | cfv | |
17 | ccj | ||
18 | 16 17 | cop | |
19 | 18 | csn | |
20 | 14 19 | cun | |
21 | cts | ||
22 | 2 21 | cfv | |
23 | cmopn | ||
24 | cabs | ||
25 | cmin | ||
26 | 24 25 | ccom | |
27 | 26 23 | cfv | |
28 | 22 27 | cop | |
29 | cple | ||
30 | 2 29 | cfv | |
31 | cle | ||
32 | 30 31 | cop | |
33 | cds | ||
34 | 2 33 | cfv | |
35 | 34 26 | cop | |
36 | 28 32 35 | ctp | |
37 | cunif | ||
38 | 2 37 | cfv | |
39 | cmetu | ||
40 | 26 39 | cfv | |
41 | 38 40 | cop | |
42 | 41 | csn | |
43 | 36 42 | cun | |
44 | 20 43 | cun | |
45 | 0 44 | wceq |