Metamath Proof Explorer


Definition df-cnfld

Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025) (New usage is discouraged.)

Ref Expression
Assertion df-cnfld fld = Base ndx + ndx x , y x + y ndx x , y x y * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnfld class fld
1 cbs class Base
2 cnx class ndx
3 2 1 cfv class Base ndx
4 cc class
5 3 4 cop class Base ndx
6 cplusg class + 𝑔
7 2 6 cfv class + ndx
8 vx setvar x
9 vy setvar y
10 8 cv setvar x
11 caddc class +
12 9 cv setvar y
13 10 12 11 co class x + y
14 8 9 4 4 13 cmpo class x , y x + y
15 7 14 cop class + ndx x , y x + y
16 cmulr class 𝑟
17 2 16 cfv class ndx
18 cmul class ×
19 10 12 18 co class x y
20 8 9 4 4 19 cmpo class x , y x y
21 17 20 cop class ndx x , y x y
22 5 15 21 ctp class Base ndx + ndx x , y x + y ndx x , y x y
23 cstv class 𝑟
24 2 23 cfv class * ndx
25 ccj class *
26 24 25 cop class * ndx *
27 26 csn class * ndx *
28 22 27 cun class Base ndx + ndx x , y x + y ndx x , y x y * ndx *
29 cts class TopSet
30 2 29 cfv class TopSet ndx
31 cmopn class MetOpen
32 cabs class abs
33 cmin class
34 32 33 ccom class abs
35 34 31 cfv class MetOpen abs
36 30 35 cop class TopSet ndx MetOpen abs
37 cple class le
38 2 37 cfv class ndx
39 cle class
40 38 39 cop class ndx
41 cds class dist
42 2 41 cfv class dist ndx
43 42 34 cop class dist ndx abs
44 36 40 43 ctp class TopSet ndx MetOpen abs ndx dist ndx abs
45 cunif class UnifSet
46 2 45 cfv class UnifSet ndx
47 cmetu class metUnif
48 34 47 cfv class metUnif abs
49 46 48 cop class UnifSet ndx metUnif abs
50 49 csn class UnifSet ndx metUnif abs
51 44 50 cun class TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
52 28 51 cun class Base ndx + ndx x , y x + y ndx x , y x y * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
53 0 52 wceq wff fld = Base ndx + ndx x , y x + y ndx x , y x y * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs