Metamath Proof Explorer


Definition df-cnfld

Description: The field of complex numbers. Other number fields and rings can be constructed by applying the ` |``s restriction operator, for instance ( CCfld |`AA ) is the field of algebraic numbers.

The contract of this set is defined entirely by cnfldex , cnfldadd , cnfldmul , cnfldcj , cnfldtset , cnfldle , cnfldds , and cnfldbas . We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014) (Revised by Thierry Arnoux, 15-Dec-2017) (New usage is discouraged.)

Ref Expression
Assertion df-cnfld fld = Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnfld class fld
1 cbs class Base
2 cnx class ndx
3 2 1 cfv class Base ndx
4 cc class
5 3 4 cop class Base ndx
6 cplusg class + 𝑔
7 2 6 cfv class + ndx
8 caddc class +
9 7 8 cop class + ndx +
10 cmulr class 𝑟
11 2 10 cfv class ndx
12 cmul class ×
13 11 12 cop class ndx ×
14 5 9 13 ctp class Base ndx + ndx + ndx ×
15 cstv class 𝑟
16 2 15 cfv class * ndx
17 ccj class *
18 16 17 cop class * ndx *
19 18 csn class * ndx *
20 14 19 cun class Base ndx + ndx + ndx × * ndx *
21 cts class TopSet
22 2 21 cfv class TopSet ndx
23 cmopn class MetOpen
24 cabs class abs
25 cmin class
26 24 25 ccom class abs
27 26 23 cfv class MetOpen abs
28 22 27 cop class TopSet ndx MetOpen abs
29 cple class le
30 2 29 cfv class ndx
31 cle class
32 30 31 cop class ndx
33 cds class dist
34 2 33 cfv class dist ndx
35 34 26 cop class dist ndx abs
36 28 32 35 ctp class TopSet ndx MetOpen abs ndx dist ndx abs
37 cunif class UnifSet
38 2 37 cfv class UnifSet ndx
39 cmetu class metUnif
40 26 39 cfv class metUnif abs
41 38 40 cop class UnifSet ndx metUnif abs
42 41 csn class UnifSet ndx metUnif abs
43 36 42 cun class TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
44 20 43 cun class Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs
45 0 44 wceq wff fld = Base ndx + ndx + ndx × * ndx * TopSet ndx MetOpen abs ndx dist ndx abs UnifSet ndx metUnif abs