Metamath Proof Explorer


Definition df-cnfn

Description: Define the set of continuous functionals on Hilbert space. For every "epsilon" ( y ) there is a "delta" ( z ) such that... (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion df-cnfn ContFn = t | x y + z + w norm w - x < z t w t x < y

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnfn class ContFn
1 vt setvar t
2 cc class
3 cmap class 𝑚
4 chba class
5 2 4 3 co class
6 vx setvar x
7 vy setvar y
8 crp class +
9 vz setvar z
10 vw setvar w
11 cno class norm
12 10 cv setvar w
13 cmv class -
14 6 cv setvar x
15 12 14 13 co class w - x
16 15 11 cfv class norm w - x
17 clt class <
18 9 cv setvar z
19 16 18 17 wbr wff norm w - x < z
20 cabs class abs
21 1 cv setvar t
22 12 21 cfv class t w
23 cmin class
24 14 21 cfv class t x
25 22 24 23 co class t w t x
26 25 20 cfv class t w t x
27 7 cv setvar y
28 26 27 17 wbr wff t w t x < y
29 19 28 wi wff norm w - x < z t w t x < y
30 29 10 4 wral wff w norm w - x < z t w t x < y
31 30 9 8 wrex wff z + w norm w - x < z t w t x < y
32 31 7 8 wral wff y + z + w norm w - x < z t w t x < y
33 32 6 4 wral wff x y + z + w norm w - x < z t w t x < y
34 33 1 5 crab class t | x y + z + w norm w - x < z t w t x < y
35 0 34 wceq wff ContFn = t | x y + z + w norm w - x < z t w t x < y