Metamath Proof Explorer


Definition df-cnp

Description: Define a function on two topologies whose value is the set of continuous mappings at a specified point in the first topology. Based on Theorem 7.2(g) of Munkres p. 107. (Contributed by NM, 17-Oct-2006)

Ref Expression
Assertion df-cnp CnP = j Top , k Top x j f k j | y k f x y g j x g f g y

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccnp class CnP
1 vj setvar j
2 ctop class Top
3 vk setvar k
4 vx setvar x
5 1 cv setvar j
6 5 cuni class j
7 vf setvar f
8 3 cv setvar k
9 8 cuni class k
10 cmap class 𝑚
11 9 6 10 co class k j
12 vy setvar y
13 7 cv setvar f
14 4 cv setvar x
15 14 13 cfv class f x
16 12 cv setvar y
17 15 16 wcel wff f x y
18 vg setvar g
19 18 cv setvar g
20 14 19 wcel wff x g
21 13 19 cima class f g
22 21 16 wss wff f g y
23 20 22 wa wff x g f g y
24 23 18 5 wrex wff g j x g f g y
25 17 24 wi wff f x y g j x g f g y
26 25 12 8 wral wff y k f x y g j x g f g y
27 26 7 11 crab class f k j | y k f x y g j x g f g y
28 4 6 27 cmpt class x j f k j | y k f x y g j x g f g y
29 1 3 2 2 28 cmpo class j Top , k Top x j f k j | y k f x y g j x g f g y
30 0 29 wceq wff CnP = j Top , k Top x j f k j | y k f x y g j x g f g y