Metamath Proof Explorer


Definition df-coe

Description: Define the coefficient function for a polynomial. (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion df-coe coeff = f Poly ι a 0 | n 0 a n + 1 = 0 f = z k = 0 n a k z k

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccoe class coeff
1 vf setvar f
2 cply class Poly
3 cc class
4 3 2 cfv class Poly
5 va setvar a
6 cmap class 𝑚
7 cn0 class 0
8 3 7 6 co class 0
9 vn setvar n
10 5 cv setvar a
11 cuz class
12 9 cv setvar n
13 caddc class +
14 c1 class 1
15 12 14 13 co class n + 1
16 15 11 cfv class n + 1
17 10 16 cima class a n + 1
18 cc0 class 0
19 18 csn class 0
20 17 19 wceq wff a n + 1 = 0
21 1 cv setvar f
22 vz setvar z
23 vk setvar k
24 cfz class
25 18 12 24 co class 0 n
26 23 cv setvar k
27 26 10 cfv class a k
28 cmul class ×
29 22 cv setvar z
30 cexp class ^
31 29 26 30 co class z k
32 27 31 28 co class a k z k
33 25 32 23 csu class k = 0 n a k z k
34 22 3 33 cmpt class z k = 0 n a k z k
35 21 34 wceq wff f = z k = 0 n a k z k
36 20 35 wa wff a n + 1 = 0 f = z k = 0 n a k z k
37 36 9 7 wrex wff n 0 a n + 1 = 0 f = z k = 0 n a k z k
38 37 5 8 crio class ι a 0 | n 0 a n + 1 = 0 f = z k = 0 n a k z k
39 1 4 38 cmpt class f Poly ι a 0 | n 0 a n + 1 = 0 f = z k = 0 n a k z k
40 0 39 wceq wff coeff = f Poly ι a 0 | n 0 a n + 1 = 0 f = z k = 0 n a k z k