Metamath Proof Explorer


Definition df-comf

Description: Define the functionalized composition operator, which is exactly like comp but is guaranteed to be a function of the proper type. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Assertion df-comf comp 𝑓 = c V x Base c × Base c , y Base c g 2 nd x Hom c y , f Hom c x g x comp c y f

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccomf class comp 𝑓
1 vc setvar c
2 cvv class V
3 vx setvar x
4 cbs class Base
5 1 cv setvar c
6 5 4 cfv class Base c
7 6 6 cxp class Base c × Base c
8 vy setvar y
9 vg setvar g
10 c2nd class 2 nd
11 3 cv setvar x
12 11 10 cfv class 2 nd x
13 chom class Hom
14 5 13 cfv class Hom c
15 8 cv setvar y
16 12 15 14 co class 2 nd x Hom c y
17 vf setvar f
18 11 14 cfv class Hom c x
19 9 cv setvar g
20 cco class comp
21 5 20 cfv class comp c
22 11 15 21 co class x comp c y
23 17 cv setvar f
24 19 23 22 co class g x comp c y f
25 9 17 16 18 24 cmpo class g 2 nd x Hom c y , f Hom c x g x comp c y f
26 3 8 7 6 25 cmpo class x Base c × Base c , y Base c g 2 nd x Hom c y , f Hom c x g x comp c y f
27 1 2 26 cmpt class c V x Base c × Base c , y Base c g 2 nd x Hom c y , f Hom c x g x comp c y f
28 0 27 wceq wff comp 𝑓 = c V x Base c × Base c , y Base c g 2 nd x Hom c y , f Hom c x g x comp c y f