Metamath Proof Explorer


Definition df-conn

Description: Topologies are connected when only (/) and U. j are both open and closed. (Contributed by FL, 17-Nov-2008)

Ref Expression
Assertion df-conn Conn = j Top | j Clsd j = j

Detailed syntax breakdown

Step Hyp Ref Expression
0 cconn class Conn
1 vj setvar j
2 ctop class Top
3 1 cv setvar j
4 ccld class Clsd
5 3 4 cfv class Clsd j
6 3 5 cin class j Clsd j
7 c0 class
8 3 cuni class j
9 7 8 cpr class j
10 6 9 wceq wff j Clsd j = j
11 10 1 2 crab class j Top | j Clsd j = j
12 0 11 wceq wff Conn = j Top | j Clsd j = j