Metamath Proof Explorer


Definition df-covers

Description: Define the covers relation ("is covered by") for posets. " a is covered by b " means that a is strictly less than b and there is nothing in between. See cvrval for the relation form. (Contributed by NM, 18-Sep-2011)

Ref Expression
Assertion df-covers = p V a b | a Base p b Base p a < p b ¬ z Base p a < p z z < p b

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccvr class
1 vp setvar p
2 cvv class V
3 va setvar a
4 vb setvar b
5 3 cv setvar a
6 cbs class Base
7 1 cv setvar p
8 7 6 cfv class Base p
9 5 8 wcel wff a Base p
10 4 cv setvar b
11 10 8 wcel wff b Base p
12 9 11 wa wff a Base p b Base p
13 cplt class lt
14 7 13 cfv class < p
15 5 10 14 wbr wff a < p b
16 vz setvar z
17 16 cv setvar z
18 5 17 14 wbr wff a < p z
19 17 10 14 wbr wff z < p b
20 18 19 wa wff a < p z z < p b
21 20 16 8 wrex wff z Base p a < p z z < p b
22 21 wn wff ¬ z Base p a < p z z < p b
23 12 15 22 w3a wff a Base p b Base p a < p b ¬ z Base p a < p z z < p b
24 23 3 4 copab class a b | a Base p b Base p a < p b ¬ z Base p a < p z z < p b
25 1 2 24 cmpt class p V a b | a Base p b Base p a < p b ¬ z Base p a < p z z < p b
26 0 25 wceq wff = p V a b | a Base p b Base p a < p b ¬ z Base p a < p z z < p b