Metamath Proof Explorer


Definition df-cpn

Description: Define the set of n -times continuously differentiable functions. (Contributed by Stefan O'Rear, 15-Nov-2014)

Ref Expression
Assertion df-cpn C n = s 𝒫 x 0 f 𝑝𝑚 s | s D n f x : dom f cn

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccpn class C n
1 vs setvar s
2 cc class
3 2 cpw class 𝒫
4 vx setvar x
5 cn0 class 0
6 vf setvar f
7 cpm class 𝑝𝑚
8 1 cv setvar s
9 2 8 7 co class 𝑝𝑚 s
10 cdvn class D n
11 6 cv setvar f
12 8 11 10 co class s D n f
13 4 cv setvar x
14 13 12 cfv class s D n f x
15 11 cdm class dom f
16 ccncf class cn
17 15 2 16 co class dom f cn
18 14 17 wcel wff s D n f x : dom f cn
19 18 6 9 crab class f 𝑝𝑚 s | s D n f x : dom f cn
20 4 5 19 cmpt class x 0 f 𝑝𝑚 s | s D n f x : dom f cn
21 1 3 20 cmpt class s 𝒫 x 0 f 𝑝𝑚 s | s D n f x : dom f cn
22 0 21 wceq wff C n = s 𝒫 x 0 f 𝑝𝑚 s | s D n f x : dom f cn