Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Curry and uncurry
df-cur
Metamath Proof Explorer
Description: Define the currying of F , which splits a function of two arguments
into a function of the first argument, producing a function over the
second argument. (Contributed by Mario Carneiro , 7-Jan-2017)
Ref
Expression
Assertion
df-cur
⊢ curry F = x ∈ dom ⁡ dom ⁡ F ⟼ y z | x y F z
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cF
class F
1
0
ccur
class curry F
2
vx
setvar x
3
0
cdm
class dom ⁡ F
4
3
cdm
class dom ⁡ dom ⁡ F
5
vy
setvar y
6
vz
setvar z
7
2
cv
setvar x
8
5
cv
setvar y
9
7 8
cop
class x y
10
6
cv
setvar z
11
9 10 0
wbr
wff x y F z
12
11 5 6
copab
class y z | x y F z
13
2 4 12
cmpt
class x ∈ dom ⁡ dom ⁡ F ⟼ y z | x y F z
14
1 13
wceq
wff curry F = x ∈ dom ⁡ dom ⁡ F ⟼ y z | x y F z