Metamath Proof Explorer


Definition df-cur

Description: Define the currying of F , which splits a function of two arguments into a function of the first argument, producing a function over the second argument. (Contributed by Mario Carneiro, 7-Jan-2017)

Ref Expression
Assertion df-cur curry F = x dom dom F y z | x y F z

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF class F
1 0 ccur class curry F
2 vx setvar x
3 0 cdm class dom F
4 3 cdm class dom dom F
5 vy setvar y
6 vz setvar z
7 2 cv setvar x
8 5 cv setvar y
9 7 8 cop class x y
10 6 cv setvar z
11 9 10 0 wbr wff x y F z
12 11 5 6 copab class y z | x y F z
13 2 4 12 cmpt class x dom dom F y z | x y F z
14 1 13 wceq wff curry F = x dom dom F y z | x y F z