Metamath Proof Explorer


Definition df-dip

Description: Define a function that maps a normed complex vector space to its inner product operation in case its norm satisfies the parallelogram identity (otherwise the operation is still defined, but not meaningful). Based on Exercise 4(a) of ReedSimon p. 63 and Theorem 6.44 of Ponnusamy p. 361. Vector addition is ( 1stw ) , the scalar product is ( 2ndw ) , and the norm is n . (Contributed by NM, 10-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion df-dip 𝑖OLD = u NrmCVec x BaseSet u , y BaseSet u k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2 4

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdip class 𝑖OLD
1 vu setvar u
2 cnv class NrmCVec
3 vx setvar x
4 cba class BaseSet
5 1 cv setvar u
6 5 4 cfv class BaseSet u
7 vy setvar y
8 vk setvar k
9 c1 class 1
10 cfz class
11 c4 class 4
12 9 11 10 co class 1 4
13 ci class i
14 cexp class ^
15 8 cv setvar k
16 13 15 14 co class i k
17 cmul class ×
18 cnmcv class norm CV
19 5 18 cfv class norm CV u
20 3 cv setvar x
21 cpv class + v
22 5 21 cfv class + v u
23 cns class 𝑠OLD
24 5 23 cfv class 𝑠OLD u
25 7 cv setvar y
26 16 25 24 co class i k 𝑠OLD u y
27 20 26 22 co class x + v u i k 𝑠OLD u y
28 27 19 cfv class norm CV u x + v u i k 𝑠OLD u y
29 c2 class 2
30 28 29 14 co class norm CV u x + v u i k 𝑠OLD u y 2
31 16 30 17 co class i k norm CV u x + v u i k 𝑠OLD u y 2
32 12 31 8 csu class k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2
33 cdiv class ÷
34 32 11 33 co class k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2 4
35 3 7 6 6 34 cmpo class x BaseSet u , y BaseSet u k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2 4
36 1 2 35 cmpt class u NrmCVec x BaseSet u , y BaseSet u k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2 4
37 0 36 wceq wff 𝑖OLD = u NrmCVec x BaseSet u , y BaseSet u k = 1 4 i k norm CV u x + v u i k 𝑠OLD u y 2 4