Metamath Proof Explorer


Definition df-disj

Description: A collection of classes B ( x ) is disjoint when for each element y , it is in B ( x ) for at most one x . (Contributed by Mario Carneiro, 14-Nov-2016) (Revised by NM, 16-Jun-2017)

Ref Expression
Assertion df-disj Disj x A B y * x A y B

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvar x
1 cA class A
2 cB class B
3 0 1 2 wdisj wff Disj x A B
4 vy setvar y
5 4 cv setvar y
6 5 2 wcel wff y B
7 6 0 1 wrmo wff * x A y B
8 7 4 wal wff y * x A y B
9 3 8 wb wff Disj x A B y * x A y B