Metamath Proof Explorer


Definition df-div

Description: Define division. Theorem divmuli relates it to multiplication, and divcli and redivcli prove its closure laws. (Contributed by NM, 2-Feb-1995) Use divval instead. (Revised by Mario Carneiro, 1-Apr-2014) (New usage is discouraged.)

Ref Expression
Assertion df-div ÷ = x , y 0 ι z | y z = x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdiv class ÷
1 vx setvar x
2 cc class
3 vy setvar y
4 cc0 class 0
5 4 csn class 0
6 2 5 cdif class 0
7 vz setvar z
8 3 cv setvar y
9 cmul class ×
10 7 cv setvar z
11 8 10 9 co class y z
12 1 cv setvar x
13 11 12 wceq wff y z = x
14 13 7 2 crio class ι z | y z = x
15 1 3 2 6 14 cmpo class x , y 0 ι z | y z = x
16 0 15 wceq wff ÷ = x , y 0 ι z | y z = x