Metamath Proof Explorer


Definition df-dmd

Description: Define the dual modular pair relation (on the Hilbert lattice). Definition 1.1 of MaedaMaeda p. 1, who use the notation (x,y)M* for "the ordered pair is a dual modular pair." See dmdbr for membership relation. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Assertion df-dmd 𝑀 * = x y | x C y C z C y z z x y = z x y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdmd class 𝑀 *
1 vx setvar x
2 vy setvar y
3 1 cv setvar x
4 cch class C
5 3 4 wcel wff x C
6 2 cv setvar y
7 6 4 wcel wff y C
8 5 7 wa wff x C y C
9 vz setvar z
10 9 cv setvar z
11 6 10 wss wff y z
12 10 3 cin class z x
13 chj class
14 12 6 13 co class z x y
15 3 6 13 co class x y
16 10 15 cin class z x y
17 14 16 wceq wff z x y = z x y
18 11 17 wi wff y z z x y = z x y
19 18 9 4 wral wff z C y z z x y = z x y
20 8 19 wa wff x C y C z C y z z x y = z x y
21 20 1 2 copab class x y | x C y C z C y z z x y = z x y
22 0 21 wceq wff 𝑀 * = x y | x C y C z C y z z x y = z x y