Description: Adomain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-domn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cdomn | |
|
1 | vr | |
|
2 | cnzr | |
|
3 | cbs | |
|
4 | 1 | cv | |
5 | 4 3 | cfv | |
6 | vb | |
|
7 | c0g | |
|
8 | 4 7 | cfv | |
9 | vz | |
|
10 | vx | |
|
11 | 6 | cv | |
12 | vy | |
|
13 | 10 | cv | |
14 | cmulr | |
|
15 | 4 14 | cfv | |
16 | 12 | cv | |
17 | 13 16 15 | co | |
18 | 9 | cv | |
19 | 17 18 | wceq | |
20 | 13 18 | wceq | |
21 | 16 18 | wceq | |
22 | 20 21 | wo | |
23 | 19 22 | wi | |
24 | 23 12 11 | wral | |
25 | 24 10 11 | wral | |
26 | 25 9 8 | wsbc | |
27 | 26 6 5 | wsbc | |
28 | 27 1 2 | crab | |
29 | 0 28 | wceq | |