Metamath Proof Explorer


Definition df-domn

Description: Adomain is a nonzero ring in which there are no nontrivial zero divisors. (Contributed by Mario Carneiro, 28-Mar-2015)

Ref Expression
Assertion df-domn Domn=rNzRing|[˙Baser/b]˙[˙0r/z]˙xbybxry=zx=zy=z

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdomn classDomn
1 vr setvarr
2 cnzr classNzRing
3 cbs classBase
4 1 cv setvarr
5 4 3 cfv classBaser
6 vb setvarb
7 c0g class0𝑔
8 4 7 cfv class0r
9 vz setvarz
10 vx setvarx
11 6 cv setvarb
12 vy setvary
13 10 cv setvarx
14 cmulr class𝑟
15 4 14 cfv classr
16 12 cv setvary
17 13 16 15 co classxry
18 9 cv setvarz
19 17 18 wceq wffxry=z
20 13 18 wceq wffx=z
21 16 18 wceq wffy=z
22 20 21 wo wffx=zy=z
23 19 22 wi wffxry=zx=zy=z
24 23 12 11 wral wffybxry=zx=zy=z
25 24 10 11 wral wffxbybxry=zx=zy=z
26 25 9 8 wsbc wff[˙0r/z]˙xbybxry=zx=zy=z
27 26 6 5 wsbc wff[˙Baser/b]˙[˙0r/z]˙xbybxry=zx=zy=z
28 27 1 2 crab classrNzRing|[˙Baser/b]˙[˙0r/z]˙xbybxry=zx=zy=z
29 0 28 wceq wffDomn=rNzRing|[˙Baser/b]˙[˙0r/z]˙xbybxry=zx=zy=z