Metamath Proof Explorer


Definition df-dsmm

Description: The direct sum of a family of Abelian groups or left modules is the induced group structure on finite linear combinations of elements, here represented as functions with finite support. (Contributed by Stefan O'Rear, 7-Jan-2015)

Ref Expression
Assertion df-dsmm m = s V , r V s 𝑠 r 𝑠 f x dom r Base r x | x dom r | f x 0 r x Fin

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdsmm class m
1 vs setvar s
2 cvv class V
3 vr setvar r
4 1 cv setvar s
5 cprds class 𝑠
6 3 cv setvar r
7 4 6 5 co class s 𝑠 r
8 cress class 𝑠
9 vf setvar f
10 vx setvar x
11 6 cdm class dom r
12 cbs class Base
13 10 cv setvar x
14 13 6 cfv class r x
15 14 12 cfv class Base r x
16 10 11 15 cixp class x dom r Base r x
17 9 cv setvar f
18 13 17 cfv class f x
19 c0g class 0 𝑔
20 14 19 cfv class 0 r x
21 18 20 wne wff f x 0 r x
22 21 10 11 crab class x dom r | f x 0 r x
23 cfn class Fin
24 22 23 wcel wff x dom r | f x 0 r x Fin
25 24 9 16 crab class f x dom r Base r x | x dom r | f x 0 r x Fin
26 7 25 8 co class s 𝑠 r 𝑠 f x dom r Base r x | x dom r | f x 0 r x Fin
27 1 3 2 2 26 cmpo class s V , r V s 𝑠 r 𝑠 f x dom r Base r x | x dom r | f x 0 r x Fin
28 0 27 wceq wff m = s V , r V s 𝑠 r 𝑠 f x dom r Base r x | x dom r | f x 0 r x Fin