Metamath Proof Explorer


Definition df-dv

Description: Define the derivative operator. This acts on functions to produce a function that is defined where the original function is differentiable, with value the derivative of the function at these points. The set s here is the ambient topological space under which we are evaluating the continuity of the difference quotient. Although the definition is valid for any subset of CC and is well-behaved when s contains no isolated points, we will restrict our attention to the cases s = RR or s = CC for the majority of the development, these corresponding respectively to real and complex differentiation. (Contributed by Mario Carneiro, 7-Aug-2014)

Ref Expression
Assertion df-dv D = s 𝒫 , f 𝑝𝑚 s x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdv class D
1 vs setvar s
2 cc class
3 2 cpw class 𝒫
4 vf setvar f
5 cpm class 𝑝𝑚
6 1 cv setvar s
7 2 6 5 co class 𝑝𝑚 s
8 vx setvar x
9 cnt class int
10 ctopn class TopOpen
11 ccnfld class fld
12 11 10 cfv class TopOpen fld
13 crest class 𝑡
14 12 6 13 co class TopOpen fld 𝑡 s
15 14 9 cfv class int TopOpen fld 𝑡 s
16 4 cv setvar f
17 16 cdm class dom f
18 17 15 cfv class int TopOpen fld 𝑡 s dom f
19 8 cv setvar x
20 19 csn class x
21 vz setvar z
22 17 20 cdif class dom f x
23 21 cv setvar z
24 23 16 cfv class f z
25 cmin class
26 19 16 cfv class f x
27 24 26 25 co class f z f x
28 cdiv class ÷
29 23 19 25 co class z x
30 27 29 28 co class f z f x z x
31 21 22 30 cmpt class z dom f x f z f x z x
32 climc class lim
33 31 19 32 co class z dom f x f z f x z x lim x
34 20 33 cxp class x × z dom f x f z f x z x lim x
35 8 18 34 ciun class x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x
36 1 4 3 7 35 cmpo class s 𝒫 , f 𝑝𝑚 s x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x
37 0 36 wceq wff D = s 𝒫 , f 𝑝𝑚 s x int TopOpen fld 𝑡 s dom f x × z dom f x f z f x z x lim x