Metamath Proof Explorer


Definition df-dvdsr

Description: Define the (right) divisibility relation in a ring. Access to the left divisibility relation is available through ( ||r( oppRR ) ) . (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Assertion df-dvdsr r = w V x y | x Base w z Base w z w x = y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdsr class r
1 vw setvar w
2 cvv class V
3 vx setvar x
4 vy setvar y
5 3 cv setvar x
6 cbs class Base
7 1 cv setvar w
8 7 6 cfv class Base w
9 5 8 wcel wff x Base w
10 vz setvar z
11 10 cv setvar z
12 cmulr class 𝑟
13 7 12 cfv class w
14 11 5 13 co class z w x
15 4 cv setvar y
16 14 15 wceq wff z w x = y
17 16 10 8 wrex wff z Base w z w x = y
18 9 17 wa wff x Base w z Base w z w x = y
19 18 3 4 copab class x y | x Base w z Base w z w x = y
20 1 2 19 cmpt class w V x y | x Base w z Base w z w x = y
21 0 20 wceq wff r = w V x y | x Base w z Base w z w x = y