Metamath Proof Explorer


Definition df-dvn

Description: Define the n -th derivative operator on functions on the complex numbers. This just iterates the derivative operation according to the last argument. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion df-dvn D n = s 𝒫 , f 𝑝𝑚 s seq 0 x V s D x 1 st 0 × f

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdvn class D n
1 vs setvar s
2 cc class
3 2 cpw class 𝒫
4 vf setvar f
5 cpm class 𝑝𝑚
6 1 cv setvar s
7 2 6 5 co class 𝑝𝑚 s
8 cc0 class 0
9 vx setvar x
10 cvv class V
11 cdv class D
12 9 cv setvar x
13 6 12 11 co class x s
14 9 10 13 cmpt class x V s D x
15 c1st class 1 st
16 14 15 ccom class x V s D x 1 st
17 cn0 class 0
18 4 cv setvar f
19 18 csn class f
20 17 19 cxp class 0 × f
21 16 20 8 cseq class seq 0 x V s D x 1 st 0 × f
22 1 4 3 7 21 cmpo class s 𝒫 , f 𝑝𝑚 s seq 0 x V s D x 1 st 0 × f
23 0 22 wceq wff D n = s 𝒫 , f 𝑝𝑚 s seq 0 x V s D x 1 st 0 × f