Database
BASIC ALGEBRAIC STRUCTURES
Rings
Divisibility
df-dvr
Next ⟩
dvrfval
Metamath Proof Explorer
Ascii
Unicode
Definition
df-dvr
Description:
Define ring division.
(Contributed by
Mario Carneiro
, 2-Jul-2014)
Ref
Expression
Assertion
df-dvr
⊢
/
r
=
r
∈
V
⟼
x
∈
Base
r
,
y
∈
Unit
⁡
r
⟼
x
⋅
r
inv
r
⁡
r
⁡
y
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cdvr
class
/
r
1
vr
setvar
r
2
cvv
class
V
3
vx
setvar
x
4
cbs
class
Base
5
1
cv
setvar
r
6
5
4
cfv
class
Base
r
7
vy
setvar
y
8
cui
class
Unit
9
5
8
cfv
class
Unit
⁡
r
10
3
cv
setvar
x
11
cmulr
class
⋅
𝑟
12
5
11
cfv
class
⋅
r
13
cinvr
class
inv
r
14
5
13
cfv
class
inv
r
⁡
r
15
7
cv
setvar
y
16
15
14
cfv
class
inv
r
⁡
r
⁡
y
17
10
16
12
co
class
x
⋅
r
inv
r
⁡
r
⁡
y
18
3
7
6
9
17
cmpo
class
x
∈
Base
r
,
y
∈
Unit
⁡
r
⟼
x
⋅
r
inv
r
⁡
r
⁡
y
19
1
2
18
cmpt
class
r
∈
V
⟼
x
∈
Base
r
,
y
∈
Unit
⁡
r
⟼
x
⋅
r
inv
r
⁡
r
⁡
y
20
0
19
wceq
wff
/
r
=
r
∈
V
⟼
x
∈
Base
r
,
y
∈
Unit
⁡
r
⟼
x
⋅
r
inv
r
⁡
r
⁡
y