Metamath Proof Explorer


Definition df-dvr

Description: Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Assertion df-dvr / r = r V x Base r , y Unit r x r inv r r y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cdvr class / r
1 vr setvar r
2 cvv class V
3 vx setvar x
4 cbs class Base
5 1 cv setvar r
6 5 4 cfv class Base r
7 vy setvar y
8 cui class Unit
9 5 8 cfv class Unit r
10 3 cv setvar x
11 cmulr class 𝑟
12 5 11 cfv class r
13 cinvr class inv r
14 5 13 cfv class inv r r
15 7 cv setvar y
16 15 14 cfv class inv r r y
17 10 16 12 co class x r inv r r y
18 3 7 6 9 17 cmpo class x Base r , y Unit r x r inv r r y
19 1 2 18 cmpt class r V x Base r , y Unit r x r inv r r y
20 0 19 wceq wff / r = r V x Base r , y Unit r x r inv r r y