Metamath Proof Explorer


Definition df-edom

Description: Define Euclidean Domains. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Assertion df-edom Could not format assertion : No typesetting found for |- EDomn = { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cedom Could not format EDomn : No typesetting found for class EDomn with typecode class
1 vd setvar d
2 cidom class IDomn
3 ceuf Could not format EuclF : No typesetting found for class EuclF with typecode class
4 1 cv setvar d
5 4 3 cfv Could not format ( EuclF ` d ) : No typesetting found for class ( EuclF ` d ) with typecode class
6 ve setvar e
7 cbs class Base
8 4 7 cfv class Base d
9 vv setvar v
10 6 cv setvar e
11 10 wfun wff Fun e
12 9 cv setvar v
13 c0g class 0 𝑔
14 4 13 cfv class 0 d
15 14 csn class 0 d
16 12 15 cdif class v 0 d
17 10 16 cima class e v 0 d
18 cc0 class 0
19 cico class .
20 cpnf class +∞
21 18 20 19 co class 0 +∞
22 17 21 wss wff e v 0 d 0 +∞
23 va setvar a
24 vb setvar b
25 vq setvar q
26 vr setvar r
27 23 cv setvar a
28 24 cv setvar b
29 cmulr class 𝑟
30 4 29 cfv class d
31 25 cv setvar q
32 28 31 30 co class b d q
33 cplusg class + 𝑔
34 4 33 cfv class + d
35 26 cv setvar r
36 32 35 34 co class b d q + d r
37 27 36 wceq wff a = b d q + d r
38 35 14 wceq wff r = 0 d
39 35 10 cfv class e r
40 clt class <
41 28 10 cfv class e b
42 39 41 40 wbr wff e r < e b
43 38 42 wo wff r = 0 d e r < e b
44 37 43 wa wff a = b d q + d r r = 0 d e r < e b
45 44 26 12 wrex wff r v a = b d q + d r r = 0 d e r < e b
46 45 25 12 wrex wff q v r v a = b d q + d r r = 0 d e r < e b
47 46 24 16 wral wff b v 0 d q v r v a = b d q + d r r = 0 d e r < e b
48 47 23 12 wral wff a v b v 0 d q v r v a = b d q + d r r = 0 d e r < e b
49 11 22 48 w3a wff Fun e e v 0 d 0 +∞ a v b v 0 d q v r v a = b d q + d r r = 0 d e r < e b
50 49 9 8 wsbc wff [˙Base d / v]˙ Fun e e v 0 d 0 +∞ a v b v 0 d q v r v a = b d q + d r r = 0 d e r < e b
51 50 6 5 wsbc Could not format [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) : No typesetting found for wff [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) with typecode wff
52 51 1 2 crab Could not format { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } : No typesetting found for class { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } with typecode class
53 0 52 wceq Could not format EDomn = { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } : No typesetting found for wff EDomn = { d e. IDomn | [. ( EuclF ` d ) / e ]. [. ( Base ` d ) / v ]. ( Fun e /\ ( e " ( v \ { ( 0g ` d ) } ) ) C_ ( 0 [,) +oo ) /\ A. a e. v A. b e. ( v \ { ( 0g ` d ) } ) E. q e. v E. r e. v ( a = ( ( b ( .r ` d ) q ) ( +g ` d ) r ) /\ ( r = ( 0g ` d ) \/ ( e ` r ) < ( e ` b ) ) ) ) } with typecode wff