Metamath Proof Explorer


Definition df-ef

Description: Define the exponential function. Its value at the complex number A is ( expA ) and is called the "exponential of A "; see efval . (Contributed by NM, 14-Mar-2005)

Ref Expression
Assertion df-ef exp = x k 0 x k k !

Detailed syntax breakdown

Step Hyp Ref Expression
0 ce class exp
1 vx setvar x
2 cc class
3 vk setvar k
4 cn0 class 0
5 1 cv setvar x
6 cexp class ^
7 3 cv setvar k
8 5 7 6 co class x k
9 cdiv class ÷
10 cfa class !
11 7 10 cfv class k !
12 8 11 9 co class x k k !
13 4 12 3 csu class k 0 x k k !
14 1 2 13 cmpt class x k 0 x k k !
15 0 14 wceq wff exp = x k 0 x k k !