Metamath Proof Explorer


Definition df-efg

Description: Define the free group equivalence relation, which is the smallest equivalence relation ~ such that for any words A , B and formal symbol x with inverse invg x , A B ~A x ( invg x ) B . (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Assertion df-efg ~ FG = i V r | r Er Word i × 2 𝑜 x Word i × 2 𝑜 n 0 x y i z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩

Detailed syntax breakdown

Step Hyp Ref Expression
0 cefg class ~ FG
1 vi setvar i
2 cvv class V
3 vr setvar r
4 3 cv setvar r
5 1 cv setvar i
6 c2o class 2 𝑜
7 5 6 cxp class i × 2 𝑜
8 7 cword class Word i × 2 𝑜
9 8 4 wer wff r Er Word i × 2 𝑜
10 vx setvar x
11 vn setvar n
12 cc0 class 0
13 cfz class
14 chash class .
15 10 cv setvar x
16 15 14 cfv class x
17 12 16 13 co class 0 x
18 vy setvar y
19 vz setvar z
20 csplice class splice
21 11 cv setvar n
22 18 cv setvar y
23 19 cv setvar z
24 22 23 cop class y z
25 c1o class 1 𝑜
26 25 23 cdif class 1 𝑜 z
27 22 26 cop class y 1 𝑜 z
28 24 27 cs2 class ⟨“ y z y 1 𝑜 z ”⟩
29 21 21 28 cotp class n n ⟨“ y z y 1 𝑜 z ”⟩
30 15 29 20 co class x splice n n ⟨“ y z y 1 𝑜 z ”⟩
31 15 30 4 wbr wff x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
32 31 19 6 wral wff z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
33 32 18 5 wral wff y i z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
34 33 11 17 wral wff n 0 x y i z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
35 34 10 8 wral wff x Word i × 2 𝑜 n 0 x y i z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
36 9 35 wa wff r Er Word i × 2 𝑜 x Word i × 2 𝑜 n 0 x y i z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
37 36 3 cab class r | r Er Word i × 2 𝑜 x Word i × 2 𝑜 n 0 x y i z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
38 37 cint class r | r Er Word i × 2 𝑜 x Word i × 2 𝑜 n 0 x y i z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
39 1 2 38 cmpt class i V r | r Er Word i × 2 𝑜 x Word i × 2 𝑜 n 0 x y i z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩
40 0 39 wceq wff ~ FG = i V r | r Er Word i × 2 𝑜 x Word i × 2 𝑜 n 0 x y i z 2 𝑜 x r x splice n n ⟨“ y z y 1 𝑜 z ”⟩