Metamath Proof Explorer


Definition df-en

Description: Define the equinumerosity relation. Definition of Enderton p. 129. We define ~ to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren . (Contributed by NM, 28-Mar-1998)

Ref Expression
Assertion df-en = x y | f f : x 1-1 onto y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cen class
1 vx setvar x
2 vy setvar y
3 vf setvar f
4 3 cv setvar f
5 1 cv setvar x
6 2 cv setvar y
7 5 6 4 wf1o wff f : x 1-1 onto y
8 7 3 wex wff f f : x 1-1 onto y
9 8 1 2 copab class x y | f f : x 1-1 onto y
10 0 9 wceq wff = x y | f f : x 1-1 onto y