Metamath Proof Explorer


Definition df-erl

Description: Define the operation giving the equivalence relation used in the localization of a ring r by a set s . Two pairs a = <. x , y >. and b = <. z , w >. are equivalent if there exists t e. s such that t x. ( x x. w - z x. y ) = 0 . This corresponds to the usual comparison of fractions x / y and z / w . (Contributed by Thierry Arnoux, 28-Apr-2025)

Ref Expression
Assertion df-erl Could not format assertion : No typesetting found for |- ~RL = ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } ) with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 cerl Could not format ~RL : No typesetting found for class ~RL with typecode class
1 vr setvar r
2 cvv class V
3 vs setvar s
4 cmulr class 𝑟
5 1 cv setvar r
6 5 4 cfv class r
7 vx setvar x
8 cbs class Base
9 5 8 cfv class Base r
10 3 cv setvar s
11 9 10 cxp class Base r × s
12 vw setvar w
13 va setvar a
14 vb setvar b
15 13 cv setvar a
16 12 cv setvar w
17 15 16 wcel wff a w
18 14 cv setvar b
19 18 16 wcel wff b w
20 17 19 wa wff a w b w
21 vt setvar t
22 21 cv setvar t
23 7 cv setvar x
24 c1st class 1 st
25 15 24 cfv class 1 st a
26 c2nd class 2 nd
27 18 26 cfv class 2 nd b
28 25 27 23 co class 1 st a x 2 nd b
29 csg class - 𝑔
30 5 29 cfv class - r
31 18 24 cfv class 1 st b
32 15 26 cfv class 2 nd a
33 31 32 23 co class 1 st b x 2 nd a
34 28 33 30 co class 1 st a x 2 nd b - r 1 st b x 2 nd a
35 22 34 23 co class t x 1 st a x 2 nd b - r 1 st b x 2 nd a
36 c0g class 0 𝑔
37 5 36 cfv class 0 r
38 35 37 wceq wff t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r
39 38 21 10 wrex wff t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r
40 20 39 wa wff a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r
41 40 13 14 copab class a b | a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r
42 12 11 41 csb class Base r × s / w a b | a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r
43 7 6 42 csb class r / x Base r × s / w a b | a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r
44 1 3 2 2 43 cmpo class r V , s V r / x Base r × s / w a b | a w b w t s t x 1 st a x 2 nd b - r 1 st b x 2 nd a = 0 r
45 0 44 wceq Could not format ~RL = ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } ) : No typesetting found for wff ~RL = ( r e. _V , s e. _V |-> [_ ( .r ` r ) / x ]_ [_ ( ( Base ` r ) X. s ) / w ]_ { <. a , b >. | ( ( a e. w /\ b e. w ) /\ E. t e. s ( t x ( ( ( 1st ` a ) x ( 2nd ` b ) ) ( -g ` r ) ( ( 1st ` b ) x ( 2nd ` a ) ) ) ) = ( 0g ` r ) ) } ) with typecode wff