Metamath Proof Explorer


Definition df-evl

Description: A simplification of evalSub when the evaluation ring is the same as the coefficient ring. (Contributed by Stefan O'Rear, 19-Mar-2015)

Ref Expression
Assertion df-evl eval = i V , r V i evalSub r Base r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cevl class eval
1 vi setvar i
2 cvv class V
3 vr setvar r
4 1 cv setvar i
5 ces class evalSub
6 3 cv setvar r
7 4 6 5 co class i evalSub r
8 cbs class Base
9 6 8 cfv class Base r
10 9 7 cfv class i evalSub r Base r
11 1 3 2 2 10 cmpo class i V , r V i evalSub r Base r
12 0 11 wceq wff eval = i V , r V i evalSub r Base r