Metamath Proof Explorer


Definition df-evls1

Description: Define the evaluation map for the univariate polynomial algebra. The function ( S evalSub1 R ) : V --> ( S ^m S ) makes sense when S is a ring and R is a subring of S , and where V is the set of polynomials in ( Poly1R ) . This function maps an element of the formal polynomial algebra (with coefficients in R ) to a function from assignments to the variable from S into an element of S formed by evaluating the polynomial with the given assignment. (Contributed by Mario Carneiro, 12-Jun-2015)

Ref Expression
Assertion df-evls1 evalSub 1 = s V , r 𝒫 Base s Base s / b x b b 1 𝑜 x y b 1 𝑜 × y 1 𝑜 evalSub s r

Detailed syntax breakdown

Step Hyp Ref Expression
0 ces1 class evalSub 1
1 vs setvar s
2 cvv class V
3 vr setvar r
4 cbs class Base
5 1 cv setvar s
6 5 4 cfv class Base s
7 6 cpw class 𝒫 Base s
8 vb setvar b
9 vx setvar x
10 8 cv setvar b
11 cmap class 𝑚
12 c1o class 1 𝑜
13 10 12 11 co class b 1 𝑜
14 10 13 11 co class b b 1 𝑜
15 9 cv setvar x
16 vy setvar y
17 16 cv setvar y
18 17 csn class y
19 12 18 cxp class 1 𝑜 × y
20 16 10 19 cmpt class y b 1 𝑜 × y
21 15 20 ccom class x y b 1 𝑜 × y
22 9 14 21 cmpt class x b b 1 𝑜 x y b 1 𝑜 × y
23 ces class evalSub
24 12 5 23 co class 1 𝑜 evalSub s
25 3 cv setvar r
26 25 24 cfv class 1 𝑜 evalSub s r
27 22 26 ccom class x b b 1 𝑜 x y b 1 𝑜 × y 1 𝑜 evalSub s r
28 8 6 27 csb class Base s / b x b b 1 𝑜 x y b 1 𝑜 × y 1 𝑜 evalSub s r
29 1 3 2 7 28 cmpo class s V , r 𝒫 Base s Base s / b x b b 1 𝑜 x y b 1 𝑜 × y 1 𝑜 evalSub s r
30 0 29 wceq wff evalSub 1 = s V , r 𝒫 Base s Base s / b x b b 1 𝑜 x y b 1 𝑜 × y 1 𝑜 evalSub s r