Metamath Proof Explorer


Definition df-exp

Description: Define exponentiation to nonnegative integer powers. For example, ( 5 ^ 2 ) = 2 5 ( ex-exp ). Terminology: In general, "exponentiation" is the operation of raising a "base" x to the power of the "exponent" y , resulting in the "power" ( x ^ y ) , also called "x to the power of y". In this case, "integer exponentiation" is the operation of raising a complex "base" x to the power of an integer y , resulting in the "integer power" ( x ^ y ) .

This definition is not meant to be used directly; instead, exp0 and expp1 provide the standard recursive definition. The up-arrow notation is used by Donald Knuth for iterated exponentiation (_Science_ 194, 1235-1242, 1976) and is convenient for us since we don't have superscripts.

10-Jun-2005: The definition was extended to include zero exponents, so that 0 ^ 0 = 1 per the convention of Definition 10-4.1 of Gleason p. 134 ( 0exp0e1 ).

4-Jun-2014: The definition was extended to include negative integer exponents. For example, ( -u 3 ^ -u 2 ) = ( 1 / 9 ) ( ex-exp ). The case x = 0 , y < 0 gives the value ( 1 / 0 ) , so we will avoid this case in our theorems.

For a definition of exponentiation including complex exponents see df-cxp (complex exponentiation). Both definitions are equivalent for integer exponents, see cxpexpz . (Contributed by Raph Levien, 20-May-2004) (Revised by NM, 15-Oct-2004)

Ref Expression
Assertion df-exp ^ = x , y if y = 0 1 if 0 < y seq 1 × × x y 1 seq 1 × × x y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cexp class ^
1 vx setvar x
2 cc class
3 vy setvar y
4 cz class
5 3 cv setvar y
6 cc0 class 0
7 5 6 wceq wff y = 0
8 c1 class 1
9 clt class <
10 6 5 9 wbr wff 0 < y
11 cmul class ×
12 cn class
13 1 cv setvar x
14 13 csn class x
15 12 14 cxp class × x
16 11 15 8 cseq class seq 1 × × x
17 5 16 cfv class seq 1 × × x y
18 cdiv class ÷
19 5 cneg class y
20 19 16 cfv class seq 1 × × x y
21 8 20 18 co class 1 seq 1 × × x y
22 10 17 21 cif class if 0 < y seq 1 × × x y 1 seq 1 × × x y
23 7 8 22 cif class if y = 0 1 if 0 < y seq 1 × × x y 1 seq 1 × × x y
24 1 3 2 4 23 cmpo class x , y if y = 0 1 if 0 < y seq 1 × × x y 1 seq 1 × × x y
25 0 24 wceq wff ^ = x , y if y = 0 1 if 0 < y seq 1 × × x y 1 seq 1 × × x y