Metamath Proof Explorer


Definition df-fcls

Description: Define a function that takes a filter in a topology to its set of cluster points. (Contributed by Jeff Hankins, 10-Nov-2009)

Ref Expression
Assertion df-fcls fClus = j Top , f ran Fil if j = f x f cls j x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfcls class fClus
1 vj setvar j
2 ctop class Top
3 vf setvar f
4 cfil class Fil
5 4 crn class ran Fil
6 5 cuni class ran Fil
7 1 cv setvar j
8 7 cuni class j
9 3 cv setvar f
10 9 cuni class f
11 8 10 wceq wff j = f
12 vx setvar x
13 ccl class cls
14 7 13 cfv class cls j
15 12 cv setvar x
16 15 14 cfv class cls j x
17 12 9 16 ciin class x f cls j x
18 c0 class
19 11 17 18 cif class if j = f x f cls j x
20 1 3 2 6 19 cmpo class j Top , f ran Fil if j = f x f cls j x
21 0 20 wceq wff fClus = j Top , f ran Fil if j = f x f cls j x