Metamath Proof Explorer


Definition df-fin3

Description: A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of Levy58 p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014)

Ref Expression
Assertion df-fin3 FinIII = x | 𝒫 x FinIV

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfin3 class FinIII
1 vx setvar x
2 1 cv setvar x
3 2 cpw class 𝒫 x
4 cfin4 class FinIV
5 3 4 wcel wff 𝒫 x FinIV
6 5 1 cab class x | 𝒫 x FinIV
7 0 6 wceq wff FinIII = x | 𝒫 x FinIV