Metamath Proof Explorer


Definition df-fm

Description: Define a function that takes a filter to a neighborhood filter of the range. (Since we now allow filter bases to have support smaller than the base set, the function has to come first to ensure that curryings are sets.) (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 20-Jul-2015)

Ref Expression
Assertion df-fm FilMap = x V , f V y fBas dom f x filGen ran t y f t

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfm class FilMap
1 vx setvar x
2 cvv class V
3 vf setvar f
4 vy setvar y
5 cfbas class fBas
6 3 cv setvar f
7 6 cdm class dom f
8 7 5 cfv class fBas dom f
9 1 cv setvar x
10 cfg class filGen
11 vt setvar t
12 4 cv setvar y
13 11 cv setvar t
14 6 13 cima class f t
15 11 12 14 cmpt class t y f t
16 15 crn class ran t y f t
17 9 16 10 co class x filGen ran t y f t
18 4 8 17 cmpt class y fBas dom f x filGen ran t y f t
19 1 3 2 2 18 cmpo class x V , f V y fBas dom f x filGen ran t y f t
20 0 19 wceq wff FilMap = x V , f V y fBas dom f x filGen ran t y f t