Metamath Proof Explorer


Definition df-frecs

Description: This is the definition for the founded recursion generator. Similar to df-wrecs and df-recs , it is a direct definition form of normally recursive relationships. Unlike the former two definitions, it only requires a founded set-like relationship for its properties, not a well-founded relationship. When this relationship is also a partial ordering, the proof does not use the Axiom of Infinity, but it requires Infinity when the order is not partial. We develop the theorems twice, once with partial ordering and once without. (Contributed by Scott Fenton, 23-Dec-2021)

Ref Expression
Assertion df-frecs frecs R A F = f | x f Fn x x A y x Pred R A y x y x f y = y F f Pred R A y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR class R
1 cA class A
2 cF class F
3 1 0 2 cfrecs class frecs R A F
4 vf setvar f
5 vx setvar x
6 4 cv setvar f
7 5 cv setvar x
8 6 7 wfn wff f Fn x
9 7 1 wss wff x A
10 vy setvar y
11 10 cv setvar y
12 1 0 11 cpred class Pred R A y
13 12 7 wss wff Pred R A y x
14 13 10 7 wral wff y x Pred R A y x
15 9 14 wa wff x A y x Pred R A y x
16 11 6 cfv class f y
17 6 12 cres class f Pred R A y
18 11 17 2 co class y F f Pred R A y
19 16 18 wceq wff f y = y F f Pred R A y
20 19 10 7 wral wff y x f y = y F f Pred R A y
21 8 15 20 w3a wff f Fn x x A y x Pred R A y x y x f y = y F f Pred R A y
22 21 5 wex wff x f Fn x x A y x Pred R A y x y x f y = y F f Pred R A y
23 22 4 cab class f | x f Fn x x A y x Pred R A y x y x f y = y F f Pred R A y
24 23 cuni class f | x f Fn x x A y x Pred R A y x y x f y = y F f Pred R A y
25 3 24 wceq wff frecs R A F = f | x f Fn x x A y x Pred R A y x y x f y = y F f Pred R A y