Metamath Proof Explorer


Definition df-frgr

Description: Define the class of all friendship graphs: a simple graph is called a friendship graph if every pair of its vertices has exactly one common neighbor. This condition is called thefriendship condition , see definition in MertziosUnger p. 152. (Contributed by Alexander van der Vekens and Mario Carneiro, 2-Oct-2017) (Revised by AV, 29-Mar-2021) (Revised by AV, 3-Jan-2024)

Ref Expression
Assertion df-frgr FriendGraph = g USGraph | [˙ Vtx g / v]˙ [˙ Edg g / e]˙ k v l v k ∃! x v x k x l e

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfrgr class FriendGraph
1 vg setvar g
2 cusgr class USGraph
3 cvtx class Vtx
4 1 cv setvar g
5 4 3 cfv class Vtx g
6 vv setvar v
7 cedg class Edg
8 4 7 cfv class Edg g
9 ve setvar e
10 vk setvar k
11 6 cv setvar v
12 vl setvar l
13 10 cv setvar k
14 13 csn class k
15 11 14 cdif class v k
16 vx setvar x
17 16 cv setvar x
18 17 13 cpr class x k
19 12 cv setvar l
20 17 19 cpr class x l
21 18 20 cpr class x k x l
22 9 cv setvar e
23 21 22 wss wff x k x l e
24 23 16 11 wreu wff ∃! x v x k x l e
25 24 12 15 wral wff l v k ∃! x v x k x l e
26 25 10 11 wral wff k v l v k ∃! x v x k x l e
27 26 9 8 wsbc wff [˙ Edg g / e]˙ k v l v k ∃! x v x k x l e
28 27 6 5 wsbc wff [˙ Vtx g / v]˙ [˙ Edg g / e]˙ k v l v k ∃! x v x k x l e
29 28 1 2 crab class g USGraph | [˙ Vtx g / v]˙ [˙ Edg g / e]˙ k v l v k ∃! x v x k x l e
30 0 29 wceq wff FriendGraph = g USGraph | [˙ Vtx g / v]˙ [˙ Edg g / e]˙ k v l v k ∃! x v x k x l e