Metamath Proof Explorer


Definition df-frlm

Description: Define the function associating with a ring and a set the direct sum indexed by that set of copies of that ring regarded as a left module over itself. Recall from df-dsmm that an element of a direct sum has finitely many nonzero coordinates. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Assertion df-frlm freeLMod = r V , i V r m i × ringLMod r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfrlm class freeLMod
1 vr setvar r
2 cvv class V
3 vi setvar i
4 1 cv setvar r
5 cdsmm class m
6 3 cv setvar i
7 crglmod class ringLMod
8 4 7 cfv class ringLMod r
9 8 csn class ringLMod r
10 6 9 cxp class i × ringLMod r
11 4 10 5 co class r m i × ringLMod r
12 1 3 2 2 11 cmpo class r V , i V r m i × ringLMod r
13 0 12 wceq wff freeLMod = r V , i V r m i × ringLMod r