Metamath Proof Explorer


Definition df-fsupp

Description: Define the property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019)

Ref Expression
Assertion df-fsupp finSupp = r z | Fun r r supp z Fin

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfsupp class finSupp
1 vr setvar r
2 vz setvar z
3 1 cv setvar r
4 3 wfun wff Fun r
5 csupp class supp
6 2 cv setvar z
7 3 6 5 co class supp z r
8 cfn class Fin
9 7 8 wcel wff r supp z Fin
10 4 9 wa wff Fun r r supp z Fin
11 10 1 2 copab class r z | Fun r r supp z Fin
12 0 11 wceq wff finSupp = r z | Fun r r supp z Fin