Metamath Proof Explorer


Definition df-full

Description: Function returning all the full functors from a category C to a category D . A full functor is a functor in which all the morphism maps G ( X , Y ) between objects X , Y e. C are surjections. Definition 3.27(3) in Adamek p. 34. (Contributed by Mario Carneiro, 26-Jan-2017)

Ref Expression
Assertion df-full Full = c Cat , d Cat f g | f c Func d g x Base c y Base c ran x g y = f x Hom d f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cful class Full
1 vc setvar c
2 ccat class Cat
3 vd setvar d
4 vf setvar f
5 vg setvar g
6 4 cv setvar f
7 1 cv setvar c
8 cfunc class Func
9 3 cv setvar d
10 7 9 8 co class c Func d
11 5 cv setvar g
12 6 11 10 wbr wff f c Func d g
13 vx setvar x
14 cbs class Base
15 7 14 cfv class Base c
16 vy setvar y
17 13 cv setvar x
18 16 cv setvar y
19 17 18 11 co class x g y
20 19 crn class ran x g y
21 17 6 cfv class f x
22 chom class Hom
23 9 22 cfv class Hom d
24 18 6 cfv class f y
25 21 24 23 co class f x Hom d f y
26 20 25 wceq wff ran x g y = f x Hom d f y
27 26 16 15 wral wff y Base c ran x g y = f x Hom d f y
28 27 13 15 wral wff x Base c y Base c ran x g y = f x Hom d f y
29 12 28 wa wff f c Func d g x Base c y Base c ran x g y = f x Hom d f y
30 29 4 5 copab class f g | f c Func d g x Base c y Base c ran x g y = f x Hom d f y
31 1 3 2 2 30 cmpo class c Cat , d Cat f g | f c Func d g x Base c y Base c ran x g y = f x Hom d f y
32 0 31 wceq wff Full = c Cat , d Cat f g | f c Func d g x Base c y Base c ran x g y = f x Hom d f y