Metamath Proof Explorer


Definition df-fzo

Description: Define a function generating sets of integers using ahalf-open range. Read ( M ..^ N ) as the integers from M up to, but not including, N ; contrast with ( M ... N ) df-fz , which includes N . Not including the endpoint simplifies a number of formulas related to cardinality and splitting; contrast fzosplit with fzsplit , for instance. (Contributed by Stefan O'Rear, 14-Aug-2015)

Ref Expression
Assertion df-fzo ..^ = m , n m n 1

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfzo class ..^
1 vm setvar m
2 cz class
3 vn setvar n
4 1 cv setvar m
5 cfz class
6 3 cv setvar n
7 cmin class
8 c1 class 1
9 6 8 7 co class n 1
10 4 9 5 co class m n 1
11 1 3 2 2 10 cmpo class m , n m n 1
12 0 11 wceq wff ..^ = m , n m n 1