Metamath Proof Explorer


Definition df-gch

Description: Define the collection of "GCH-sets", or sets for which the generalized continuum hypothesis holds. In this language the generalized continuum hypothesis can be expressed as GCH =V . A set x satisfies the generalized continuum hypothesis if it is finite or there is no set y strictly between x and its powerset in cardinality. The continuum hypothesis is equivalent to om e. GCH . (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion df-gch GCH = Fin x | y ¬ x y y 𝒫 x

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgch class GCH
1 cfn class Fin
2 vx setvar x
3 vy setvar y
4 2 cv setvar x
5 csdm class
6 3 cv setvar y
7 4 6 5 wbr wff x y
8 4 cpw class 𝒫 x
9 6 8 5 wbr wff y 𝒫 x
10 7 9 wa wff x y y 𝒫 x
11 10 wn wff ¬ x y y 𝒫 x
12 11 3 wal wff y ¬ x y y 𝒫 x
13 12 2 cab class x | y ¬ x y y 𝒫 x
14 1 13 cun class Fin x | y ¬ x y y 𝒫 x
15 0 14 wceq wff GCH = Fin x | y ¬ x y y 𝒫 x