Metamath Proof Explorer


Definition df-ghm

Description: A homomorphism of groups is a map between two structures which preserves the group operation. Requiring both sides to be groups simplifies most theorems at the cost of complicating the theorem which pushes forward a group structure. (Contributed by Stefan O'Rear, 31-Dec-2014)

Ref Expression
Assertion df-ghm GrpHom = s Grp , t Grp g | [˙Base s / w]˙ g : w Base t x w y w g x + s y = g x + t g y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cghm class GrpHom
1 vs setvar s
2 cgrp class Grp
3 vt setvar t
4 vg setvar g
5 cbs class Base
6 1 cv setvar s
7 6 5 cfv class Base s
8 vw setvar w
9 4 cv setvar g
10 8 cv setvar w
11 3 cv setvar t
12 11 5 cfv class Base t
13 10 12 9 wf wff g : w Base t
14 vx setvar x
15 vy setvar y
16 14 cv setvar x
17 cplusg class + 𝑔
18 6 17 cfv class + s
19 15 cv setvar y
20 16 19 18 co class x + s y
21 20 9 cfv class g x + s y
22 16 9 cfv class g x
23 11 17 cfv class + t
24 19 9 cfv class g y
25 22 24 23 co class g x + t g y
26 21 25 wceq wff g x + s y = g x + t g y
27 26 15 10 wral wff y w g x + s y = g x + t g y
28 27 14 10 wral wff x w y w g x + s y = g x + t g y
29 13 28 wa wff g : w Base t x w y w g x + s y = g x + t g y
30 29 8 7 wsbc wff [˙Base s / w]˙ g : w Base t x w y w g x + s y = g x + t g y
31 30 4 cab class g | [˙Base s / w]˙ g : w Base t x w y w g x + s y = g x + t g y
32 1 3 2 2 31 cmpo class s Grp , t Grp g | [˙Base s / w]˙ g : w Base t x w y w g x + s y = g x + t g y
33 0 32 wceq wff GrpHom = s Grp , t Grp g | [˙Base s / w]˙ g : w Base t x w y w g x + s y = g x + t g y