Database
TG (TARSKI-GROTHENDIECK) SET THEORY
Inaccessibles
Grothendieck universes
df-gru
Metamath Proof Explorer
Description: A Grothendieck universe is a set that is closed with respect to all the
operations that are common in set theory: pairs, powersets, unions,
intersections, Cartesian products etc. Grothendieck and alii,
Séminaire de Géométrie Algébrique 4,
Exposé I, p. 185. It was designed to give a precise meaning to
the concepts of categories of sets, groups... (Contributed by Mario
Carneiro , 9-Jun-2013)
Ref
Expression
Assertion
df-gru
⊢ Univ = u | Tr ⁡ u ∧ ∀ x ∈ u 𝒫 x ∈ u ∧ ∀ y ∈ u x y ∈ u ∧ ∀ y ∈ u x ⋃ ran ⁡ y ∈ u
Detailed syntax breakdown
Step
Hyp
Ref
Expression
0
cgru
class Univ
1
vu
setvar u
2
1
cv
setvar u
3
2
wtr
wff Tr ⁡ u
4
vx
setvar x
5
4
cv
setvar x
6
5
cpw
class 𝒫 x
7
6 2
wcel
wff 𝒫 x ∈ u
8
vy
setvar y
9
8
cv
setvar y
10
5 9
cpr
class x y
11
10 2
wcel
wff x y ∈ u
12
11 8 2
wral
wff ∀ y ∈ u x y ∈ u
13
cmap
class ↑ 𝑚
14
2 5 13
co
class u x
15
9
crn
class ran ⁡ y
16
15
cuni
class ⋃ ran ⁡ y
17
16 2
wcel
wff ⋃ ran ⁡ y ∈ u
18
17 8 14
wral
wff ∀ y ∈ u x ⋃ ran ⁡ y ∈ u
19
7 12 18
w3a
wff 𝒫 x ∈ u ∧ ∀ y ∈ u x y ∈ u ∧ ∀ y ∈ u x ⋃ ran ⁡ y ∈ u
20
19 4 2
wral
wff ∀ x ∈ u 𝒫 x ∈ u ∧ ∀ y ∈ u x y ∈ u ∧ ∀ y ∈ u x ⋃ ran ⁡ y ∈ u
21
3 20
wa
wff Tr ⁡ u ∧ ∀ x ∈ u 𝒫 x ∈ u ∧ ∀ y ∈ u x y ∈ u ∧ ∀ y ∈ u x ⋃ ran ⁡ y ∈ u
22
21 1
cab
class u | Tr ⁡ u ∧ ∀ x ∈ u 𝒫 x ∈ u ∧ ∀ y ∈ u x y ∈ u ∧ ∀ y ∈ u x ⋃ ran ⁡ y ∈ u
23
0 22
wceq
wff Univ = u | Tr ⁡ u ∧ ∀ x ∈ u 𝒫 x ∈ u ∧ ∀ y ∈ u x y ∈ u ∧ ∀ y ∈ u x ⋃ ran ⁡ y ∈ u