Metamath Proof Explorer


Definition df-gsum

Description: Define the group sum (also called "iterated sum") for the structure G of a finite sequence of elements whose values are defined by the expression B and whose set of indices is A . It may be viewed as a product (if G is a multiplication), a sum (if G is an addition) or any other operation. The variable k is normally a free variable in B (i.e., B can be thought of as B ( k ) ). The definition is meaningful in different contexts, depending on the size of the index set A and each demanding different properties of G .

1. If A = (/) and G has an identity element, then the sum equals this identity. See gsum0 .

2. If A = ( M ... N ) and G is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ( B ( 1 ) + B ( 2 ) ) + B ( 3 ) , etc. See gsumval2 and gsumnunsn .

3. If A is a finite set (or is nonzero for finitely many indices) and G is a commutative monoid, then the sum adds up these elements in some order, which is then uniquely defined. See gsumval3 .

4. If A is an infinite set and G is a Hausdorff topological group, then there is a meaningful sum, but gsum cannot handle this case. See df-tsms .

Remark: this definition is required here because the symbol gsum is already used in df-prds and df-imas . The related theorems are provided later, see gsumvalx . (Contributed by FL, 5-Sep-2010) (Revised by FL, 17-Oct-2011) (Revised by Mario Carneiro, 7-Dec-2014)

Ref Expression
Assertion df-gsum Σ𝑔 = w V , f V x Base w | y Base w x + w y = y y + w x = y / o if ran f o 0 w if dom f ran ι x | m n m dom f = m n x = seq m + w f n ι x | g [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgsu class Σ𝑔
1 vw setvar w
2 cvv class V
3 vf setvar f
4 vx setvar x
5 cbs class Base
6 1 cv setvar w
7 6 5 cfv class Base w
8 vy setvar y
9 4 cv setvar x
10 cplusg class + 𝑔
11 6 10 cfv class + w
12 8 cv setvar y
13 9 12 11 co class x + w y
14 13 12 wceq wff x + w y = y
15 12 9 11 co class y + w x
16 15 12 wceq wff y + w x = y
17 14 16 wa wff x + w y = y y + w x = y
18 17 8 7 wral wff y Base w x + w y = y y + w x = y
19 18 4 7 crab class x Base w | y Base w x + w y = y y + w x = y
20 vo setvar o
21 3 cv setvar f
22 21 crn class ran f
23 20 cv setvar o
24 22 23 wss wff ran f o
25 c0g class 0 𝑔
26 6 25 cfv class 0 w
27 21 cdm class dom f
28 cfz class
29 28 crn class ran
30 27 29 wcel wff dom f ran
31 vm setvar m
32 vn setvar n
33 cuz class
34 31 cv setvar m
35 34 33 cfv class m
36 32 cv setvar n
37 34 36 28 co class m n
38 27 37 wceq wff dom f = m n
39 11 21 34 cseq class seq m + w f
40 36 39 cfv class seq m + w f n
41 9 40 wceq wff x = seq m + w f n
42 38 41 wa wff dom f = m n x = seq m + w f n
43 42 32 35 wrex wff n m dom f = m n x = seq m + w f n
44 43 31 wex wff m n m dom f = m n x = seq m + w f n
45 44 4 cio class ι x | m n m dom f = m n x = seq m + w f n
46 vg setvar g
47 21 ccnv class f -1
48 2 23 cdif class V o
49 47 48 cima class f -1 V o
50 46 cv setvar g
51 c1 class 1
52 chash class .
53 12 52 cfv class y
54 51 53 28 co class 1 y
55 54 12 50 wf1o wff g : 1 y 1-1 onto y
56 21 50 ccom class f g
57 11 56 51 cseq class seq 1 + w f g
58 53 57 cfv class seq 1 + w f g y
59 9 58 wceq wff x = seq 1 + w f g y
60 55 59 wa wff g : 1 y 1-1 onto y x = seq 1 + w f g y
61 60 8 49 wsbc wff [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y
62 61 46 wex wff g [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y
63 62 4 cio class ι x | g [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y
64 30 45 63 cif class if dom f ran ι x | m n m dom f = m n x = seq m + w f n ι x | g [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y
65 24 26 64 cif class if ran f o 0 w if dom f ran ι x | m n m dom f = m n x = seq m + w f n ι x | g [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y
66 20 19 65 csb class x Base w | y Base w x + w y = y y + w x = y / o if ran f o 0 w if dom f ran ι x | m n m dom f = m n x = seq m + w f n ι x | g [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y
67 1 3 2 2 66 cmpo class w V , f V x Base w | y Base w x + w y = y y + w x = y / o if ran f o 0 w if dom f ran ι x | m n m dom f = m n x = seq m + w f n ι x | g [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y
68 0 67 wceq wff Σ𝑔 = w V , f V x Base w | y Base w x + w y = y y + w x = y / o if ran f o 0 w if dom f ran ι x | m n m dom f = m n x = seq m + w f n ι x | g [˙ f -1 V o / y]˙ g : 1 y 1-1 onto y x = seq 1 + w f g y